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Recent studies have started to unravel the structure of mutualistic networks, although few functional
explanations underlying such structure have been explored. We used computer simulations to test whether
complementarity between phenotypic traits of plants and animals can explain the pervasive tendency of
specialists to interact with proper subsets of species that generalists interact with (nested interactions), and how
phylogeny affects such interaction patterns. Simultaneously, we assessed whether complementarity and
phylogenetic structure were associated with patterns of interaction in a real mutualistic community. Simulation
results support that highly nested networks can emerge from phenotypic complementarity, particularly when
several traits are involved. The hierarchical structure of phylogenetic relations can also contribute to increased
nestedness because traits determining complementarity are then inherited in a correlated fashion. Phylogenetic
effects on resulting generalization levels are often low, but can be detected. Results from the empirical network
support a relevant role of complementarity and phylogenetic history on interaction patterns. Our results
demonstrate that these factors can contribute to nestedness, which emphasize the necessity of considering
evolutionary mechanisms in studies of community structure.

Plant-animal mutualistic networks depict mutually
beneficial interactions between plants and their animal
pollinators or seed dispersers. An increasing number of
studies currently attempt to understand how these
mutualistic networks are structured and, more specifi-
cally, how predictable structures may emerge and/or
evolve (Olesen and Jordano 2002, Bascompte et al.
2003, 2006, Jordano et al. 2003, 2006, Thompson
2005, Vázquez and Aizen 2006). A nested organization,
in which specialists interact with proper subsets of
the species generalists interact with, is an example of
such a predictable structure (Bascompte et al. 2003,
Bascompte and Jordano 2006). This pattern implies
two properties at the network level. First, specialist
species interact with generalists (Bascompte et al. 2003,
Vázquez and Aizen 2004). Second, generalists are
frequently associated among themselves building the
‘core’ of the network whereas ‘peripheral’ specialists
tend to interact with this core of species (Bascompte
et al. 2003, Vázquez et al. 2005). Properties such as
nestedness probably have far reaching consequences on

how coevolution proceeds in highly diversified and
low-specificity mutualisms among free-living taxa
(Thompson 2005, Lewinsohn et al. 2006).

Nestedness seems pervasive across mutualistic net-
works (Bascompte et al. 2003, Guimarães et al. 2006a,
2006b), whereas the processes underlying this network
structure are not completely understood. Two candi-
dates have been proposed as important factors under-
lying observed distributions of the number of links per
species, and possibly nestedness: species abundance
(Vázquez and Aizen 2004, Vázquez et al. 2007) and
‘phenotypic complementarity’ (Jordano 1987, Jordano
et al. 2003, Stang et al. 2006). Phenotypic comple-
mentarity can be defined as the degree of functional
matching between interacting species, and has been
frequently gauged on key phenotypic traits that can
directly affect the outcome of interactions (e.g. corolla
length and tongue or bill length of pollinators, fruit size
and gape width of animal frugivores, etc). Although the
relevance of phenotypic complementarity as a determi-
nant of species interactions is not new and has been
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acknowledged in studies addressing host shifts and
specialized interactions (Nilsson 1988, Becerra 1997,
Johnson and Steiner 1997, Borrell 2005, Nuismer
and Thompson 2006) or community compartmentali-
zation (Fonseca and Ganade 1996, Dicks et al. 2002,
Prado and Lewinsohn 2004), its association with
community nested structure has been so far a matter
of speculation. For example, Thompson (2005) has
suggested that nested patterns can result from the
establishment of a core of highly interacting plants
and animals via phenotypic complementarity and
convergence within each set of species (see also
Lewinsohn et al. 2006).

Several studies have described the relation between
network structure of mutualistic communities and
species abundance. Here, we determined whether
phenotypic complementarity can be a plausible me-
chanism determining nested patterns of association, and
under which conditions this may happen. For this
purpose, we employed a simple model which assumes
that phenotypic complementarity is the main determi-
nant of how species interact and that generalization or
specialization subsequently emerges from this process.
Because related species tend to be phenotypically similar
due to shared ancestry (Blomberg et al. 2003, Garland
et al. 2005, Ives and Godfray 2006), we also address
how phylogenetic relations can affect the outcome from
our phenotypic complementarity model. We show that
phenotypic complementarity results in increasingly
higher levels of nestedness as the number of phenotypic
traits involved increases, and that the hierarchical nature
of species relationships can contribute significantly to
the formation of nested patterns. In addition, we tested
whether phenotypic complementarity and phylogenetic
effects can account for interaction patterns of a real
plant-seed disperser network.

Material and methods

From phylogenies to interaction matrices

At the community level, plant-animal mutualistic net-
works are often described by means of interaction
matrices describing pairwise interactions among the two
sets of plant (rows) and animal (columns) species, its
graphical representation being a bipartite graph with
the two sets of nodes connected by links (Jordano et al.
2003, 2006). In mutualistic networks, phylogenies
depict hypotheses about the patterns of shared ancestry
within each of the two sets of species (plants and
animals) interacting in the network (Fig. 1). For our
simulations, we chose 64 species for animals and 32
species for plants to maintain phylogenies completely
balanced, and because these values fall within the range
of mutualistic networks in nature (Bascompte et al.

2003, Jordano et al. 2003, Vázquez and Aizen 2004).
We arbitrarily define ‘animals’ as the larger set of
species and we will refer hereafter to plants and animals
for clarity purposes, although we emphasize that these
‘taxa’ differ in the number of species used in our
simulations but in no other attribute.

We employed Monte-Carlo simulations to simulate
qualitative matrices of interactions (0 and 1 coding the
absence and presence, respectively, of a pairwise inter-
action, Jordano et al. 2003) incorporating the effects of
phylogenetic history for plants and animals. Simula-
tions were performed in several steps, which are
described in detail below. In summary, we first
simulated the evolution of phenotypic traits of plant
and animal species along their phylogenetic trees.
Subsequently, we employed these phenotypic attributes
to calculate the probability associated with the occur-
ence of each animal-plant pairwise interaction (i.e. the
probability that an animal species would interact with a
plant species increases with the degree of matching
between their phenotypes). These probabilities were
then used to build the qualitative matrix of interactions.
Therefore, the resulting network is determined solely by
each species phenotypes and the phenotypes of their
potential interactors. From these simulations, we sub-
sequently analyzed (1) the structure of the qualitative
matrix of interactions and (2) the number of interac-
tions per species within the network (as mentioned
above, generalization and specialization are emergent
properties stemming from simulations).

We simulated the evolution of one to eight
independent phenotypic traits for plants and animals
assuming Brownian motion with PDSIMUL (Garland
et al. 1993). We manipulated the relative contribution
of phylogeny performing simulations across phylogenies
with contrasting degrees of hierarchy (such contribution
of phylogeny is currently known as ‘phylogenetic
signal’, Blomberg et al. 2003). Succinctly, very hier-
archical trees generally produce high phylogenetic signal
(i.e. phylogenetically related species resembling each
other) because a large proportion of the evolutionary
history is shared between species. Conversely, in trees
with little hierarchy most of the evolutionary history is
independent between species (Fig. 1). Therefore, we
initially simulated phenotypic evolution across star
phylogenies, where phylogenetic signal should be absent
because it lacks hierarchical structure (Fig. 1a). Subse-
quently, we repeated simulations employing phyloge-
nies with Grafen’s (1989) arbitrary branch lengths
(Fig. 1b), which are considerably hierarchical and
consequently should generate high levels of phyloge-
netic signal.

We then assigned each phenotypic trait in one
species set (e.g. proboscis length of an insect) to
a corresponding trait on the other set (e.g. the depth
of a flower’s corolla). Each pair of corresponding
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phenotypic traits is hereafter referred as a ‘phenotypic
dimension’ (i.e. a pair of key traits in plants and animals
whose matching can affect the outcome of the interac-
tion). For example, the insect’s nutrient requirements
versus the flower’s nectar and/or pollen composition,
and activity period of an insect versus opening times of
a flower, constitute two additional phenotypic dimen-
sions. The probability of a plant-animal species pairwise
interaction varies with the degree of ‘matching’ between
their traits in each dimension, decreasing as a function
of phenotypic distance between species. From two non-
overlapping distributions representing corresponding
phenotypic traits for animals and plants, we calculated
the probability P of interaction as a function of those
traits as 1"d2(a,p), where d(a,p) is the standardized
Euclidean distance (ranging from 0 to 1) between
phenotypic traits of animal species a and plant species p
in a given dimension. Extrapolation to n phenotypic
dimensions leads to:

P(a; p)#
Yn

i#1

(1"d2i (a; p)) (1)

To generate matrices with comparable connectances
(C#the number of realized interactions/total possible
interactions, Fig. 1) of 10% across simulations, prob-
ability values were then standardized so that their sum
equals 0.1.

Simulations were performed including 1, 2, 3, 4 and
8 different phenotypic dimensions for data with
phylogenetic signal. For each permutation (i.e. with
varying number of dimensions, with and without
phylogenetic signal) we simulated 100 replicates, which
represent 100 different sets of simulated traits in
PDSIMUL. Interaction matrices were generated with
R (Anonymous 2003), employing a module from the

PHYLOGR package (R. Diaz-Uriarte and T. Garland,
available at http://cran.r-project.org) that reads output
files from PDSIMUL and a program written ad hoc.

Fig. 1. Schematic representation of mutualistic networks and
the phylogenetic structure of plants and animals involved.
Occupied cells depict a realized pairwise interaction. Each
column and row depict a plant and an animal species,
respectively, and animal and plant phylogenies are shown
above and besides the interaction matrix. (a) Interaction matrix
simulated from plant and animal phenotypic
traits without phylogenetic signal (traits were simulated
across a star phylogeny), with a connectance of 8.2% and
nestedness N#0.80. (b) Matrix obtained from simulations
of phenotypic traits with phylogenetic signal (phylogenies were
balanced and highly hierarchical, resulting in high levels of
signal), with a connectance of 7.9% and N#0.79. Simulations
in both cases were performed with 64 and 32 species of
animals and plants, respectively, and 8 phenotypic dimensions
(Fig. 2). (c) The plant-frugivore mutualistic network from the
community of Nava de las Correhuelas, in Sierra de Cazorla,
southeastern Spain, employed as an illustrative example in the
text and Table 2. This matrix contains 33 frugivore species and
25 plants, a connectance of 18.6% and N#0.93.
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Empirical dataset

We assessed whether the association between patterns of
interaction could be associated with phenotypic com-
plementarity and phylogenetic history in a real interac-
tion web. We studied the plant-frugivore network of the
community of Nava de las Correhuelas, in Sierra de
Cazorla, southern Spain (Fig. 1c), and tested whether
interactions could be partly explained by the interplay
between birds’ beak size, and plants’ fruit size and seed
mass. Details about the study area and methods can be
found in Jordano and Schupp (2000). Briefly, we
carried out direct observations of frugivores feeding at
fruiting plants and scored an interaction for each fruit
handled by a frugivore (Snow and Snow 1988). These
feeding records were taken either during timed watches
at fruiting trees or during transect censuses (see Jordano
1993 for detailed methods). Observations were carried
out yearly throughout the fruiting season between
1988!2000, with more sporadic observations between
2001!2005. A total of 7015 feeding records were
obtained from !520 h of observation.

Morphological measurements (bill length, width
and height;90.1 mm) were performed on mist-netted
birds and, for some species, from museum specimens
(Estación Biológica de Doñana, CSIC, scientific collec-
tion). Fruit and seed size measurements (maximum
length and width; 90.1 mm) were performed on
samples of 30 to 50 fruits from different individual
plants (at least 5 distinct individuals, 6!10 fruits
plant"1 sampled). This data is available upon request
to the authors.

Because our model assumes that the interaction
between animal and plant phenotypic traits determine
how species interact, we employed logistic and linear
regressions to determine whether the interaction term is
statistically associated with patterns of species assem-
blages. Significance of different factors in the logistic
regressions were calculated from changes in maximum
likelihood values, which follow a x2 distribution with
1 DF. In addition, we tested whether morphological
traits for plants and animals, as well the number of
interaction per species in these groups, show significant
phylogenetic signal, as explained below. Results are
presented as mean9SD.

Analyses

We calculated the level of nestedness for each simulated
matrix employing the ‘temperature index’ (Temp) of
Atmar and Patterson (1993). This index estimates how
an interaction matrix deviates on average from the
isocline of perfect nestedness (i.e. how often unexpected
interactions occur compared to a completely nested
matrix), ranging from perfect nestedness (Temp#0) to

perfect non-nestedness (Temp#100). Temperatures
were calculated employing Aninhado (Guimarães and
Guimarães 2006, http://www.guimaraes.bio.br), which
provides the same temperature outputs as the Nested-
ness Calculator software (Atmar and Patterson 1993)
iteratively for large sets of matrices. Because here
we emphasize nestedness or order instead of disorder,
we calculated nestedness as N#(100"Temp)/100
(Bascompte et al. 2003).

To test whether species propensity to interact and
species realized number of interactions show significant
phylogenetic signal (i.e. whether closely related species
tend to significantly resemble each other), we employed
the randomization procedure described by Blomberg
et al. (2003). The underlying rationale is that, when
species tend to resemble each other due to relatedness,
the correlation between the phenotypic data and the
structure of the candidate tree is high. If the correlation
is higher than the correlation obtained for 95% of the
randomizations where the phenotypic data has been
randomly permuted across the tips of the tree (thus
destroying any phylogenetic signal that may have
existed), then one concludes that phylogenetically
related species tend to resemble each other statistically
more than expected at random (Blomberg et al. 2003).
With the randomization procedure and the results from
simulations with and without signal, we also quantified
the statistical power to detect signal in our datasets
(1"type II error) and type I error rates, respectively
(Blomberg et al. 2003).

To compare results from different simulations, the
amount of phylogenetic signal was estimated with the K
statistic proposed by Blomberg et al. (2003). The
K statistic provides the fraction of signal of the data
relative to the amount expected from Brownian motion
(random walk) on a determined phylogeny. Thus,
values of K equal to 1 indicate that the amount of
resemblance between species is the same as the expecta-
tion from random walk along the candidate phylogeny.
Values of K larger than 1 indicate that the data has more
signal than expected for that tree, whereas values lower
than 1 would indicate that there is less signal than
expected (note that values of K can be low and remain
statistically significant, depending on the results of the
randomization procedure described above). For exam-
ple, behavioral traits have K values falling consistently
below 1, which suggests that behavior can evolve fast
and result in more pronounced differences between
closely related species than expected if behavior evolved
following Brownian motion (Blomberg et al. 2003).
We estimated K on both the arithmetic mean prob-
ability of each species to interact and on the realized
number of interactions, to determine how the transfor-
mation from a continuous to a discrete variable might
affect both the amount of signal and the statistical
power to detect it (Blomberg et al. 2003).
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The effects of phylogenetic signal and number of
phenotypic dimensions on nestedness were estimated
with a nested ANCOVA. We compared simulations
with and without signal (i.e. obtained employing a
hierarchical and a star phylogeny, respectively; Fig. 1)
and included the number of dimensions as a factor
nested within these two groups. Not all species had an
interaction and, therefore, did not participate in the
interaction network. Thus, matrix size (i.e. the total
number of possible interactions between animal and
plant species#spp. animals$spp. plants) and connec-
tance (the number of realized interactions) were
included as covariates.

Results

Simulations resulted in interaction matrices with vari-
able sizes and connectances. Matrix size ranged between
1176 and 2048 cells (each cell represents a possible
interaction) with an average size of 1773.89130.2
cells. Matrix mean connectance was 9.391.2%, ran-
ging between 6.7% to 18.6%. Animal species included
in the interaction networks varied between 42 and 64
species (mean of 56.993.2), and plants included
ranged between 25 and 32 species (mean 31.291.1).
Additional diagnostics (results not shown), such as the
range of connectances obtained, the skewed distribution
of links across species and the positive relation-
ship between connectance and relative nestedness
(Bascompte et al. 2003), support that our model
generates matrices presumably comparable to real
mutualistic communities.

Nestedness values across all simulations ranged
between 0.64 and 0.90 (mean of 0.7390.04). All
factors and covariates included in our nested analysis
were statistically significant. The presence of phyloge-
netic signal and the number of phenotypic dimensions
increased significantly nestedness on our ANCOVA
(F1,988#119.5, pB0.001 and F8,988#79.1, pB
0.001, respectively; Fig. 2). Adjusted means indicate
that the increment from 1 to 8 phenotypic dimensions
increased nestedness on average by 13.7% (Fig. 2).
According to the coefficients obtained from the nested
model, the presence of phylogenetic signal also con-
tributed to increase nestedness by 3.390.4% (mean9
SE), and this effect was larger with additional number
of dimensions (Fig. 2). Conversely, nestedness estimates
were negatively correlated with matrix connectance
(F1,988#4.30, p#0.038), perhaps because both vari-
ables vary with matrix size. Significant negative quad-
ratic coefficients from regressions performed separately
for datasets with and without signal (t497#"4.2, pB
0.001 and t497#"2.9, p#0.003, respectively) suggest
a curvilinear association between nestedness and the
number of dimensions employed (Fig. 2).

Simulations without signal traced on a hierarchical
phylogeny show that type I error rates fluctuate around
5%, as expected (i.e. significant signal is detected when
it is not present in 5% of the cases, Table 1). When
phenotypic traits were simulated employing hierarchical
trees, phylogenetic signal on the probability to interact
per species (i.e. the average probability per row or
column, see Fig. 1) decreased with the number of
phenotypic dimensions added to the model, being
significantly lower than the expectation from Brownian
motion (K#1.0) in some instances (Table 1). The
discretization from continuous probability values to the
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Fig. 2. (a) Nestedness and (b) amount of phylogenetic signal
K of the number of links per species as a function of the
number of dimensions (K is the ratio of estimated signal over
the expectation from the phylogeny assuming Brownian
motion, hence K#1 indicates a close match between
phylogenetic relations among species and their phenotypic
resemblance). Simulations were performed with and without
phylogenetic signal (full and open symbols, respectively). Each
point depicts means9SD from 100 simulations, adjusted
for a matrix with 57.7 animal species and 31.4 plant species
and a connectance of 9.1%. Dashed lines on (a) represent
the following quadratic regressions: N#0.713%0.016
n"0.0007 n2 (without signal) and N#0.715%0.021 n"
0.0011 n2 (with signal).
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realized number of interactions per species caused an
additional substantial decrease on the amount of
phylogenetic signal (from a 2-fold to a 17-fold
decrease). Paradoxically, both the amount of phyloge-
netic signal and the statistical power to detect signal
(1"type II error) increased with the number of
phenotypic dimensions included (Fig. 2, Table 1).

Empirical network

For the frugivory network of Nava de las Correhuelas,
the interaction between beak size and seed mass is a
weak but significant predictor of bird-plant interaction
patterns. Results from backward and forward logistic
regressions, employing measurements of beak height
and width as surrogates for size, and fruit diameter and
seed mass as plant characters (all log-transformed
values), were always consistent. Main effects were never
significant, whereas most bird versus plant interaction
terms were statistically significant (x2#42.8, pB
0.001 for fruit diameter$beak width, x2#11.4,
pB0.001 for seed mass$beak width and x2#23.9,
pB0.001 for seed mass$beak height). Among realized
pairwise interactions, a multivariate regression sup-
ported a significant positive correlation between beak
height and seed mass (n#130 interactions, F1,129#
3.07, 1-tailed p#0.041).

Regarding the phylogenetic component associated
with patterns of interactions and morphological surro-
gates, randomization tests support significant phyloge-
netic signal on the number of links per species and
morphological traits among birds, whereas in plants
none of the variables showed significant phylogenetic
signal (Table 2).

Table 2. Amount and significance of phylogenetic signal
of variables from the community of Nava de las Correhuelas.
K depicts the ratio of observed amount of resemblance between
species in the phylogeny compared against expectations from a
Brownian mode of phenotypic evolution. Analyses were
performed employing constant branch lengths, as suggested
by diagnostic tests. Values in bold indicate statistically sig-
nificant phylogenetic signal (pB0.05).

No. of species K p

Animals
Beak widh 28 1.340 0.001
Beak height 28 1.766 B0.001
No. of links per sp. 33 0.301 0.018

Plants
Fruit diameter 25 0.308 0.173
Seed mass 22 0.251 0.504
No. of links per sp. 25 0.243 0.660
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Discussion

Few studies have integrated phylogenetic and complex
network analyses (Cattin et al. 2004, Lewinsohn et al.
2005), and our study shows how integrating both areas
can provide insights on unexplored mechanisms under-
lying community assemblages. Conversely, several
studies have described the importance of species relative
abundances for network patterns of interactions
(Vázquez and Aizen 2006, Vázquez et al. 2007), or
emphasized the role portrayed by network build-up
processes as the determinants of species attributes in the
network (Medan et al. 2007). Whereas these studies
make no assumption about the intrinsic degree of
specialization of species, our study assumes that
phenotypic complementarity ultimately determines
the number of interactors per species (see also Vázquez
et al. 2005). Interestingly, both approaches can result in
highly nested networks, hence interaction patterns in
nature might ultimately result from complementary
processes.

Nonetheless, observations such as the existence of
syndromes (Fenster et al. 2004, Pauw 2006), or
the absence of interaction between generalist species
(Fig. 1c in Bascompte et al. 2003, Fig. 8.2 in Jordano
et al. 2006), support that phenotypic complementarity
probably contributes to community structure. In addi-
tion, the prevailing explanation based on abundance has
been recently challenged, and neither sampling effort
nor species abundance seem to totally account for
species specialization levels (Blüthgen et al. 2006,
Ghazoul 2006). In this context, although the role
portrayed by abundance is certainly relevant, the
enormous diversity of phenotypes encountered in
nature and the potential consequences for interaction
patterns should not be dismissed (Fontaine et al. 2006).
For instance, the 16% increase in nestedness obtained
as more dimensions and phylogenetic signal are
included correspond to roughly 50% of the range of
variation in nestedness observed in real mutualistic
networks of similar size (Fig. 2 in Bascompte et al.
2003). In this context, new analytical methods may be
able to partition the contribution of each factor to
overall network structure, and also address how these
factors interact. For instance, addressing whether
species levels of generalization depend of their abun-
dance or vice versa is a fundamental issue within this
framework, with important repercussions on the evolu-
tion of these networks and on community stability.

Results listed here suggest that phenotypic diversity
associated with evolutionary history can contribute to
the structure of mutualistic networks. Instead of contra-
dicting previous studies emphasizing the relevance of
species abundance, we argue that these explanations are
not mutually exclusive and should be integrated into a
single more broad framework. For instance, it was

recently suggested that nestedness and compartmenta-
lization may result from different evolutionary and
ecological processes, where ‘compartmentation should
reflect coevolutionary histories and constraints, whereas
differences in species abundance or dispersal may
generate nestedness’ (Lewinsohn et al. 2006). Pheno-
typic complementarity has been invoked to explain the
presence of compartments within networks of species
interactions (Fonseca and Ganade 1996, Dicks et al.
2002, Jordano et al. 2003, 2006, Prado and Lewinsohn
2004, Wilson et al. 2004, Borrell 2005), and our results
now suggest that it may partly account for nested
patterns of mutualistic communities (Bascompte et al.
2003, Guimarães et al. 2006a, 2006b). Therefore,
different patterns of association may be explained by
similar processes, which opens the question of how the
interplay between ecological and evolutionary processes
generates such contrasting network structures (see also
McGill et al. 2006).

Phenotypic complementarity and network
structure

Our results show that the nested structure of mutua-
listic assemblages may be partly explained from differ-
ential patterns of phenotypic complementarity among
species. Effects increase with the number of phenotypic
dimensions because, as more dimensions may constrain
possible interactions, the distribution of links are more
heterogeneous and the effects of fewer generalist
become increasingly important (Rezende unpubl).
Although the existence of phenotypic preferences and/
or constraints associated with certain interactors seems
intuitively obvious, testing which or how many pheno-
typic factors affect patterns of interactions in nature can
be challenging in several ways (but see Ollerton and
Liede 1997, Wilson et al. 2004, Borrell 2005, Much-
hala 2006, Pauw 2006, Stang et al. 2006). First, the
relationship between phenotypic values and interaction
probabilities are difficult to quantify (with the excep-
tion of some forbidden interactions straightforward to
identify, Jordano et al. 2006), and more so when one
must consider phenotypic plasticity and/or individual
variation. Second, the interaction between animal and
plant traits may depend on additional factors (e.g.
animal behavior). For instance, seed size might con-
strain seed dispersal for species that swallow the whole
fruit, whereas other species which are pulp consumers
may still disperse fruits with large seeds (Jordano 1995).
Third, measurable phenotypic traits may be associated
with several dimensions of ‘complementarity’ (e.g. body
size alone could predict patterns of complementarity
based on fruit size or nutritional quality if beak size and
digestive efficiency vary as a function of size). Fourth,
although some traits may be comparable across closely
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related species, comparisons between distant species
may be practically impossible due to contrasting
strategies underlying interactions (e.g. trying to com-
pare pollination constraints associated with body size
between bees and hummingbirds). Finally, some factors
may be difficult to estimate, such as fruit or nectar
palatability. These considerations highlight the chal-
lenges of studying the association between species
phenotypes and community structure, and the necessity
of a holistic approach in studies of this nature.

How can phenotypic complementarity be tested and
quantified in natural systems? Studies with analogous
models, where niche was defined as a hypervolume of n
dimensions to study ecological niche space and overlap,
have employed multivariate statistics (Litvak and
Hansell 1990, see also McGill et al. 2006). However,
the presence of two sets of species in plant-animal
mutualistic systems provides an additional complica-
tion: interaction patterns may be determined by the
interplay between phenotypes of animals and plants,
besides the effects associated with phenotypic values of
one of the sets as reported in some studies (Ackermann
and Weigend 2006). Testing whether this is the case
requires detailed information on phenotypic values
of both sets of species, some a priori testable hypothesis
of how phenotypic traits may determine patterns of
interaction and interaction outcomes (Pauw 2006,
Stang et al. 2006) and on species evolutionary history.
For instance, beak size and gape width have been
reported to influence and limit fruit foraging by avian
frugivores (Wheelwright 1985, Levey 1987, Jordano
1995), and here we showed that the interaction between
beak size and seed mass is a weak but significant
predictor of bird-plant interaction patterns in the
community of Nava de las Correhuelas. However,
although general linear models may shed some light
on the role portrayed by different traits and their
interaction, this approach offers limited information on
the causality of realized patterns. Experimental mani-
pulation and preference trials may complement this
strictly correlational approach, providing mechanistic
explanations to observed patterns of interaction (e.g. the
sugar composition of nectar and fruits partly determine
the plant species with whom nectarivorous and frugi-
vorous birds interact, Schondube and Martinez del Rı́o,
2003).

Phylogenetic signal

Our findings suggest that, under certain scenarios, the
presence of phylogenetic signal can significantly con-
tribute to the nested structure of mutualistic networks,
and this effect is larger as more phenotypic dimensions
are involved (Fig. 2). How can phylogenetic structure
result in more nested networks? It is known that, due to

the hierarchical structure of species phylogenetic rela-
tions, closely related species will tend to be similar in
several phenotypic traits because they inherit multiple
traits from a single ancestor. For instance, two related
bird species may have similar beak sizes, gut morphol-
ogy and behave similarly (and so on). Therefore,
distances across phenotypic dimensions will be corre-
lated (even when their evolution is simulated separately,
as in this study), and such correlation might explain
why phylogenetically structured simulations are more
nested. Two sources of evidence support this explana-
tion. First, phenotypic distances were highly correlated
across most dimensions in our simulations employ-
ing hierarchical phylogenies (p"0.0001, results not
shown). Second, we were able to generate the same
pattern observed in our simulations simply by varying
the degree of correlation between phenotypic dimen-
sions (Fig. 3). Notice that in this example we did not
include any phylogenetic information. Instead, we
sampled phenotypic values from different distributions
that were more or less correlated between them.

Nevertheless, whether phylogenetic signal partly
accounts for nested patterns of real communities
remains to be tested, for several reasons. First, we
currently do not know how many phenotypic dimen-
sions might determine interaction patterns at a whole
network level, even though relevant phenotypic con-
straints have been identified for some specific pairwise
interactions (Stang et al. 2006). Second, the magnitude
of phylogenetic signal can vary considerably in nature
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Fig. 3. Effects of the number of phenotypic dimensions n on
nestedness estimates for (a) the model depicted in main text
(Eq. 1) and for (b) a model where the probabilities of
interaction associated with each dimension are inversely
proportional to phenotypic distances (#1/d2(a,p)). Simula-
tions were performed assuming independent (open symbols)
or highly correlated phenotypic dimensions (full symbols). In
the later case, distances across dimensions are all identical, and
probabilities vary in effect as a function of 1/(d2)n. Not all
points are plotted in (b) because matrix size decreased
dramatically when approaching ‘perfect nestedness’ (N#
1.0), as an increasingly larger fraction of species did not
interact.
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depending on the phenotypic traits (see Blomberg et al.
2003 for a revision of K values on different sets of
traits), and its effects on nestedness vary with the
amount of signal. Accordingly, simulations with phy-
logenies with intermediate levels of signal resulted in
nestedness values falling between the two curves shown
in Fig. 2 (unpubl.). Third, different functions relating
phenotypic distances with the probability of occurrence
of a pairwise interaction provide qualitatively similar
effects with varying magnitudes (Fig. 3). And fourth, as
the number of dimensions increase, the network
asymptotically approaches ‘perfect nestedness’ (N#
1.0), hence nestedness estimates obtained with and
without phylogenetic signal should eventually converge.

Whether the number of links per species within a
community presents significant phylogenetic signal, and
how much signal is present, is currently not known (but
see Rezende et al. 2007). The presence of significant
signal on species propensity to interact may provide
important information on the processes underlying
network structure, and might reflect the existence of
phenotypic constraints and/or preferences that deter-
mine interaction patterns, as well as differences in
abundance that are associated with past evolutionary
history (e.g. social versus asocial insects). In this context,
our simulation results highlight two important caveats
for future studies: (1) phylogenetic signal on the
number of interactions per species can often be rescued
from real datasets when interactions depend on traits
with an important phylogenetic component, and (2) the
amount of phylogenetic signal K will generally be low
(Table 1), because the number of interactions is not
continuous and because the propensity to interact is
often determined by a set of phenotypic traits. Analyses
performed on the mutualistic network of Nava de las
Correhuelas (Fig. 1c) support the predictions listed
above. Significant phylogenetic signal on the number of
links per species among birds was coincident with signal
on surrogates of beak size and of lower magnitude
(Table 2), which was expected because morphological
traits often show more phylogenetic signal that ecolo-
gical traits. This pattern occurs because morphological
traits tend to be more conserved along the phylog-
eny, and measurement errors tend to be lower
in morphological measurements (Blomberg et al.
2003). Conversely, in plants none of the variables
analyzed showed significant signal. These observa-
tions, taken together with the results from logistic
regressions reported above, provides compelling evi-
dence that phylogenetic effects on interaction patterns
among animals may partly result from phenotypic
complementarity. Nonetheless, more information is
necessary to disentangle which factors underlie these
results.

Conclusions

We have demonstrated that phenotypic complementar-
ity and phylogenetic history can contribute significantly
to nested patterns of interaction. Accordingly, recent
studies have described the role of species phenotypes as
determinants of interactions (Stang et al. 2006) and
their relevance to ecosystem sustainability (Fontaine
et al. 2006). It seems intuitively obvious that commu-
nity structure should ultimately depend of species
phenotypic attributes and abundances, and more gen-
eral models including both factors are necessary. Such
an integration is crucial to understand species and
network tolerance to extinction events, specialization
and generalization on ecological and evolutionary time,
and the relevance of these processes on the evolution and
stability of contrasting community structures.
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